實際例子#
我們以實際例子展開,假設 A、B 均開啟 rebase,且初始 balance 和 share 均為 100,C 未開啟 rebase,balance 為 200
此時的狀態如下,可見是滿足等式條件的:
- totalSupply = 100 + 100 + 200 = 400
- sharePrice = 1
- rebasingSupply = (100 + 100) * 1 = 200
- nonRebasingSupply = 200
那麼 C 調用 distribute 來貢獻自己的 200 token,狀態變化為:
- totalSupply = 100 + 100 - 200 = 0
- sharePrice = 1 + (200/200) = 2
- rebasingSupply = (100 + 100) * 2 = 400
- nonRebasingSupply = 0
此時顯然等式不再成立,為了保證等式成立,totalSupply 應該是 400 而不是 0,回到第一個版本,我們每次調用 distribute 時都會通過_mint 來修改每個參與 rebase 用戶的 balance,實際上系統是增發了,因為前面進行了銷毀操作,因此保持了平衡
那麼在第二版中,前面也進行了銷毀,但是卻沒有增發,只是更新 sharePrice,那麼就算用戶帳面上的 balance 增加了,但是實際來領取時,系統總量是不夠的。因此,這裡差的 400 就是需要增發的量,同理我們不需要按比例增發給每個用戶,而是記錄在一個全局變量中,當用戶退出 rebase 時再 mint 出相應的數額
補償鑄造#
首先定義全局的 unminted 變量:
uint256 public unminted;
unminted 需要在 distribute 時增加,在 exit 時減少:
function _exitRebase(address user) internal {
uint256 shares = rebasingAccount[user].nShares;
rebasingAccount[user].isRebasing = false;
rebasingAccount[user].nShares = 0;
totalShares -= shares;
uint256 balance = share2Balance(shares);
uint256 rawBalance = ERC20.balanceOf(user);
if (balance > rawBalance) {
uint256 delta = balance - rawBalance;
ERC20._mint(user, delta);
unminted -= delta;
}
emit RebaseExit(user, shares, block.timestamp);
}
function distribute(uint256 amount) external {
require(balanceOf(msg.sender)>=amount, "SimpleERC20Rebase: not enough");
_burn(msg.sender, amount);
sharePrice += amount*1e30 / totalShares;
unminted += amount;
}
修改後的代碼如下,我們新增了 unminted 變量,並在 distribute 時累加,在 exit 時增發相應數目 token 給用戶
至此,ERC20Rebase 的核心框架已經實現了,不過代碼僅供參考,只關注了核心邏輯的實現,對比 ecg 中的 ERC20RebaseDistributor 合約,我們仍欠缺很關鍵的部分:線性釋放,分紅的 token 不是一次性反饋給 holder,而是在一定的周期內線性增加。
由於添加了時間的維度,相應的也會衍生出許多問題:如果分紅周期內 share 總量發生變化,如何保證公平分發?
Code#
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.13;
import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
contract SimpleERC20Rebase is ERC20 {
event RebaseEnter(address indexed account, uint256 indexed shares, uint256 indexed timestamp);
event RebaseExit(address indexed account, uint256 indexed shares, uint256 indexed timestamp);
struct RebasingState {
bool isRebasing;
uint256 nShares;
}
mapping(address => RebasingState) internal rebasingAccount;
uint256 public totalShares;
uint256 public unminted;
uint256 public sharePrice = 1e30;
constructor(
string memory _name,
string memory _symbol
) ERC20(_name, _symbol) {}
function rebasingSupply() public view returns (uint256) {
return share2Balance(totalShares);
}
function nonRebasingSupply() public view returns (uint256) {
return totalSupply() - rebasingSupply();
}
function share2Balance(uint256 shares) view public returns (uint256) {
return shares * sharePrice / 1e30;
}
function balance2Share(uint256 balance) view public returns (uint256) {
return balance * 1e30 / sharePrice ;
}
function enterRebase() external {
require(!rebasingAccount[msg.sender].isRebasing, "SimpleERC20Rebase: already rebasing");
_enterRebase(msg.sender);
}
function _enterRebase(address user) internal {
uint256 balance = balanceOf(user);
uint256 shares = balance2Share(balance);
rebasingAccount[user].isRebasing = true;
rebasingAccount[user].nShares = shares;
totalShares += shares;
emit RebaseEnter(user, shares, block.timestamp);
}
function exitRebase() external {
require(rebasingAccount[msg.sender].isRebasing, "SimpleERC20Rebase: not rebasing");
_exitRebase(msg.sender);
}
function _exitRebase(address user) internal {
uint256 shares = rebasingAccount[user].nShares;
rebasingAccount[user].isRebasing = false;
rebasingAccount[user].nShares = 0;
totalShares -= shares;
uint256 balance = share2Balance(shares);
uint256 rawBalance = ERC20.balanceOf(user);
if (balance > rawBalance) {
uint256 delta = balance - rawBalance;
ERC20._mint(user, delta);
unminted -= delta;
}
emit RebaseExit(user, shares, block.timestamp);
}
function distribute(uint256 amount) external {
require(balanceOf(msg.sender)>=amount, "SimpleERC20Rebase: not enough");
_burn(msg.sender, amount);
sharePrice += amount*1e30 / totalShares;
unminted += amount;
}
function totalSupply() public view override returns (uint256) {
return super.totalSupply() + unminted;
}
function balanceOf(address account) public view override returns (uint256) {
uint256 rawBalance = ERC20.balanceOf(account);
if (rebasingAccount[account].isRebasing) {
return share2Balance(rebasingAccount[account].nShares);
} else {
return rawBalance;
}
}
function mint(address user, uint256 amount) external {
bool isRebasing = rebasingAccount[user].isRebasing;
if (isRebasing) {
_exitRebase(user);
}
ERC20._mint(user, amount);
if (isRebasing) {
_enterRebase(user);
}
}
function transfer(address to, uint256 amount) public virtual override returns (bool) {
bool isFromRebasing = rebasingAccount[msg.sender].isRebasing;
bool isToRebasing = rebasingAccount[to].isRebasing;
if (isFromRebasing) {
_exitRebase(msg.sender);
}
if (isToRebasing && to != msg.sender) {
_exitRebase(to);
}
bool result = ERC20.transfer(to, amount);
if (isFromRebasing) {
_enterRebase(msg.sender);
}
if (isToRebasing && to != msg.sender) {
_enterRebase(to);
}
return result;
}
function transferFrom(
address from,
address to,
uint256 amount
) public virtual override returns (bool) {
bool isFromRebasing = rebasingAccount[from].isRebasing;
bool isToRebasing = rebasingAccount[to].isRebasing;
if (isFromRebasing) {
_exitRebase(from);
}
if (isToRebasing && to != from) {
_exitRebase(to);
}
bool result = ERC20.transfer(to, amount);
if (isFromRebasing) {
_enterRebase(from);
}
if (isToRebasing && to != from) {
_enterRebase(to);
}
return result;
}
}